Pre-class Warm-up!!!
True or False?
Let A be a 2×2 matrix.

1. If A is not diagonalizable then the characteristic polynomial of A has a repeated root.
a. True $\sqrt{ }$
b. False most
2. If the characteristic polynomial of A has a repeated root then A is not diagonalizable.
a. True
b. False
most

Section 6.3 Applications involving powers of.

 matrices
We learn:

- a method for finding high powers of matrices using diagonalization
- applications to the stable behavior of populations etc.
- the Cayley-Hamilton theorem

Question. Find $A \wedge 10$ where $A=\left[\begin{array}{cc}-5 & -14 \\ 3 & 8\end{array}\right] \quad$ Find $P^{-1}=\frac{1}{-1}\left[\begin{array}{cc}-1 & -2 \\ 3 & 7\end{array}\right]=\left[\begin{array}{cc}1 & 2 \\ -3 & -7\end{array}\right]$
Soleutir: We ciagonalure. Take $P=\left[\begin{array}{cc}7 & 2 \\ -3 & -1\end{array}\right]$
$P^{-1} A P=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$
Steps: $\operatorname{det}(A-\lambda I)=\ldots=(\lambda-1)(\lambda-2)$
Solve $(A-\lambda I) v=0 ; \lambda=1,\left[\begin{array}{cc}-6 & -1 \\ 3 & 7\end{array}\right] v=0$
$\left[\begin{array}{l}7 \\ 3\end{array}\right]$ is a basis for the 1 -eigensace

$$
\lambda=2, \quad\left[\begin{array}{cc}
-7 & -14 \\
3 & 6
\end{array}\right] v=0,\left(\begin{array}{c}
2 \\
-1
\end{array}\right] \text { is a bars }
$$

for the 2 -eigenspace so $P=\left[\begin{array}{cc}7 & 2 \\ -3 & -1\end{array}\right]$ works.
Observe $P^{-1} A P P^{-1} A P P^{-1} A P \cdots P^{-1} A P=P^{-1} A^{10} P$

$$
=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]^{10}=\left[\begin{array}{ll}
1 & 0 \\
0 & 2^{10}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1024
\end{array}\right]
$$

Finally $A^{10}=P\left(P^{-1} A^{10} P\right) P^{-1}$

Question. Find $A \wedge 10$ where $A=\left[\begin{array}{cc}-5 & -14 \\ 3 & 8\end{array}\right]$
Solution: We diagonalize. Take $P=\left[\begin{array}{cc}7 & 2 \\ -3 & -1\end{array}\right]$

$$
P^{-1} A P=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]
$$

Steps: $\operatorname{det}(A-\lambda I)=\cdots=(\lambda-1)(\lambda-2)$
Solve $(A-\lambda I) v=0: \lambda=1,\left[\begin{array}{cc}-6 & -14 \\ 3 & 7\end{array}\right] v=0$
$\left[\begin{array}{l}7 \\ 3\end{array}\right]$ is a bari for the 1 -eigensoace
$\lambda=2,\left[\begin{array}{cc}-7 & -1 k \\ 3 & 6\end{array}\right] v=0,\left[\begin{array}{c}2 \\ -1\end{array}\right]$ is a bairns
for the 2 -eigenspace so $P=\left[\begin{array}{cc}7 & 2 \\ -3 & -1\end{array}\right]$ works.
Note that $\longleftarrow 10$ times \longrightarrow

$$
\begin{aligned}
\left(P^{-1} A P\right)^{10} & =P^{-1} A P P^{-1} A P P^{-1} A P \ldots P^{1} A P \\
& =P^{-1} A^{10} P \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]^{10}
\end{aligned}=\left[\begin{array}{cc}
1 & 0 \\
0 & 1024
\end{array}\right]
$$

$$
\begin{aligned}
& \text { finally } \\
& \begin{aligned}
& A^{10}=P\left(P^{-1} A P P\right) P^{-1}=P\left[\begin{array}{cc}
1 & 0 \\
0 & 1024
\end{array}\right] P^{-1} \\
&=\left[\begin{array}{cc}
7 & 2 \\
-3 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 1024
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
-3 & -7
\end{array}\right] \\
&=\left[\begin{array}{cc}
7 & 2 \\
-3 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
-3.1024 & -7.1024
\end{array}\right] \\
&=\left[\begin{array}{cc}
7-6.1024 & 14-14.1024 \\
-3+3.1024 & -6+7.1024
\end{array}\right]
\end{aligned}
\end{aligned}
$$

Question:

At a debate between candidates A and B, of the people who started supporting $\mathrm{A}, 0.8$ stay with $A, 0.2$ change to B.
Of the people who started supporting B, 0.9 stay with $B, 0.1$ change to A. After a large number of debates, what proportion of people support each candidate?

Another question:
Each year, of the people who live in the center of a city, 0.8 of them stay in the center and 0.2 of them move to the suburbs.
Of the people who live in the suburbs, 0.9 of them stay in the suburbs and 0.1 of them move to the center. After many years, what proportion of people live in the center and what proportion in the suburbs?

Yet another question:
After k years the number of rabbits in a region is $r _k$ and the number of foxes is $f_{-} k$, and these satisfy

$$
\begin{aligned}
& r_{k}=0.8 r_{k-1}+0.1 f_{k-1} \\
& f_{k}=0.2 r_{k-1}+0.9 f_{k-1}
\end{aligned}
$$

After many years, what is the proportion of rabbits to foxes?

Question:

Which of these three questions do you think is the easiest to solve?
a. the first
b. the second
c. the third
d. None of them

Question:
At a debate between candidates A and B, of the people who started supporting $A, 0.8$ stay with A, 0.2 change to B.
Of the people who started supporting B, 0.9 stay with B, 0.1 change to A. After a large number of debates, what proportion of people support each candidate?
Solution. Let S_{k}^{A}, S_{k}^{B} be the number of supporters of A and B after debate k.
Then

$$
\begin{aligned}
n S_{k}^{A} & =0.8 S_{k-1}^{A}+0.1 S_{k-1}^{B} \\
S_{k}^{B} & =0.2 S_{k-1}^{A}+0.9 S_{k-1}^{B} \\
{\left[\begin{array}{c}
S_{k}^{A} \\
S_{k}^{B}
\end{array}\right] } & =\left[\begin{array}{ll}
0.8 & 0.1 \\
0.2 & 0.9
\end{array}\right]\left[\begin{array}{c}
S_{k-1}^{A} \\
B \\
S_{k-1}
\end{array}\right] \\
& =\left[\begin{array}{ll}
0.8 & 0.1 \\
0.2 & 0.9
\end{array}\right]\left[\begin{array}{c}
S_{0}^{A} \\
S_{0}^{A}
\end{array}\right]
\end{aligned}
$$

Thus about $\frac{1}{3}$ support $A, \frac{2}{3}$ support B even tally

Diagonalize $\left[\begin{array}{ll}0.8 & 0.1 \\ 0.2 & 0.9\end{array}\right]$.

$$
\begin{aligned}
& \text { Char poly. }=\lambda^{2}-1.7 \lambda+0.7=\frac{1}{10}\left(10 \lambda^{2}-17 \lambda+7\right) \\
& \quad=\frac{1}{10}(10 \lambda-7)(\lambda-1)
\end{aligned}
$$

e-values: $\lambda=0.7,1$

$$
\begin{aligned}
& \lambda=1 \text { : Solve }\left[\begin{array}{ccc}
-0.2 & 0.1 \\
0.2 & -0.1
\end{array}\right] v=0, v=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& \lambda=0.7 \text { Solve }\left[\begin{array}{cc}
0.1 & 0.1 \\
0.2 & 0.2
\end{array}\right] \quad v=0 \quad r=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
& P=\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right] \quad P^{-1} A P=\left[\begin{array}{ll}
1 & 0.2 \\
0 & 0.7
\end{array}\right] \\
& p^{-1}=\frac{1}{-3}\left[\begin{array}{cc}
-1 & -1 \\
-2 & 1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right] \\
& {\left[\begin{array}{ll}
0.8 & 0.1 \\
0.2 & 0.9
\end{array}\right]^{k}=P\left(P^{-1} A P\right)^{k} P^{-1} \simeq P\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] P^{-1}} \\
& =\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right] \frac{1}{3}\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{3} \\
\frac{2}{3} & 2 / 3
\end{array}\right] \text { when } k \text { is page. } \\
& \begin{array}{l}
S_{2}^{A} \\
S_{K}^{B}
\end{array} \approx\left[\begin{array}{l}
1 / 3 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right]\left[\begin{array}{l}
S_{0}^{A} \\
S_{0}^{B}
\end{array}\right]=\left[\begin{array}{l}
13\left(S_{0}^{A}+S_{0}^{B}\right) \\
2 / 3\left(S_{0}^{A}+S_{0}^{B}\right)
\end{array}\right]
\end{aligned}
$$

The Cayley-Hamilton theorem.
Let $\mathrm{P} _A$ be the characteristic polynomial of a square matrix A, so

$$
P_{A}=\operatorname{det}(A-\lambda I)
$$

Then $p _A(A)=0$ (the zero matrix).
Example: $\quad A=\left[\begin{array}{cc}-5 & -14 \\ 3 & 8\end{array}\right], p_{A}(\lambda)=\lambda^{2}-3 \lambda+2$

$$
A^{2}=\left[\begin{array}{cc}
-17 & -42 \\
9 & 22
\end{array}\right]
$$

The CH theorem says $A^{2}-3 A+2 I=\left(\begin{array}{l}00 \\ 000\end{array}\right]$

$$
\left[\begin{array}{cc}
-17 & -42 \\
9 & 22
\end{array}\right]-\left[\begin{array}{cc}
-15 & -42 \\
9 & 24
\end{array}\right]+\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Like 6.3 questions 15-24 (not on the HW):
Use the CH theorem to find $\mathrm{A} \wedge\{-1\}, \mathrm{A} \wedge 3$, A^4.

Solution: Start with $P_{A}(A)=A^{2}-3 A+2 I$
Multiply by $A^{-1}: A-3 I+2 A^{-1}=0$

$$
\begin{aligned}
A^{-1} & =\frac{1}{2}(3 I-A) \\
& =\frac{1}{2}\left(\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right]-\left[\begin{array}{cc}
-5 & -14 \\
3 & 8
\end{array}\right]\right)=\frac{1}{2}\left[\begin{array}{cc}
8 & 14 \\
-3 & -5
\end{array}\right]
\end{aligned}
$$

Multiply by $A: \quad A^{3}-3 A^{2}+2 A=0$

$$
A^{3}=3 A^{2}-2 A=\ldots
$$

The Cayley-Hamilton theorem.
Let $p _A$ be the characteristic polynomial of a square matrix A.
Then $p _A(A)=0$ (the zero matrix).
Proof: We use the adjoint matrix from page 199.

$$
\begin{aligned}
& \operatorname{adj}(B)=\left[B_{i j}\right]^{T} \\
& B_{y}=(-1)^{L+j} \operatorname{det}\left(L_{j} \text {-minor of } B\right) \\
& B \cdot \operatorname{adj}(B)=|B| \cdot I \text { for everymarrix } B \text {, so } \\
& (A-\lambda I) \operatorname{adj}(A-\lambda I)=\operatorname{det}(A-\lambda I) \cdot I=P_{A} \cdot I
\end{aligned}
$$

White

$$
\begin{aligned}
\operatorname{ade} \jmath(A-\lambda I) & =Q_{0}+Q_{1} \lambda+\cdots+Q_{n-1} \lambda^{n-1} \\
P_{A} & =c_{0}+c_{1} \lambda+\cdots+c_{n} \lambda^{n}
\end{aligned}
$$

Now $(A-\lambda I) \operatorname{adj}(A-\lambda I)$

$$
\begin{aligned}
& (A-\lambda I) \operatorname{adj}(A-\lambda I) \\
& =A Q_{0}-Q_{0} \lambda+A Q_{1} \lambda-Q_{1} \lambda^{2}+\ldots+A Q_{n-1} \lambda^{n-1} \\
& =c_{0} I+C_{1} \lambda I+\cdots+c_{n} \lambda^{n} I
\end{aligned}
$$

Equate powers of λ to get:

$$
\begin{aligned}
& \left.\begin{array}{rlr}
A Q_{0} & =c_{0} I & \\
A Q_{1}-Q_{0} & =c_{1} I \text { multiply by } A \\
\vdots & & A^{2} \\
A Q_{n-1}-Q_{n-2} & =c_{n-1} I & A^{n-1} \\
-Q_{n-1} & =c_{n} I & A^{n}
\end{array}\right] \text { add } \\
& A Q_{0}+A^{2} Q_{1}-A Q_{0}+\ldots+A^{n} Q_{n-1}-A^{n-1} Q_{n-2}-A^{n} Q_{n-1} \\
& =0 \\
& =c_{0} I+c_{1} A+c_{2} A^{2}+\cdots+c_{n} A^{n} \\
& =p_{n}(A)
\end{aligned}
$$

